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Abstract. A new class of Lie-algebraic structures g, is revealed in some multi-particle 
processes of quantum physics having internal symmetr). groups G,.,. They are extensions 
of some Lie algebras h (via coset construction) by G-invariant h-tensors U which are 
polynomials in boson operators. Applications of these algebras are briefly discussed for 
solving spectral and evolution tasks with gd as their dynamic symmetry algebras. 

1. Introduction 

The mathematical apparatus of Lie groups and algebras has been widely and fruitfully 
exploited in different branches of quantum physics from the time of its origin [l-31. 
Specifically, it provides powerful techniques (Wigner-Racah algebras [2,4], general- 
ized coherent states (GCS) [ 5 , 6 ]  etc.) for solving both spectral and evolution tasks with 
Hamiltonians Ho given by quadratic forms in the second quantization operators a,?, a, 
which are easily transformed in linear combinations of Lie algebras generators with 
the help of the Jordan-Schwinger (JS) mapping [3,4,7]. But many Hamiltonians of 
quantum many-body physics have no such simple form (see, e.g., [8-151 and 
references therein) and may be represented at best by certain elements of universal 
enveloping algebras U(g) of some Lie algebras 'g'. In certain special models such 
nonlinear Hamiltonians can be transformed to linear forms in generators of some Lie 
algebras via the Holstein-Primakoff (HP) type mappings [13,14] or their extensions 
[9,11.12,15]. But, in general, it is not the case, and therefore a direct application of 
Lie-algebraic techniques to solving physical tasks is less efficient than for linear 
realizations of Hamiltonians in generators of Lie algebras. 

But recently some new Lie-algebraic structures (quantum groups or algebras, 
W-algebras etc. [16-20]) have been introduced in different areas of modern physics. 
All these objects, called nonlinear or deformed Lie algebras 'g,,' [20], are generated by 
certain sets 5={T,} of their generators T,satisfying commutation relations (CR) of the 
form 

[Te+ r b ] = f d { T c } )  (1.1) 

where fah(. . . .) are functions of the generators T, given by power series and 
constrained by the Jacobi identities (which are fulfilled automatically when sets 5 are 
embedded in associative algebras A(5) ) .  Many deformed algebras g, used in physics 
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have the so-called coset struclure (sde [19,20]) 

and may be viewed as extensions l f  usual Lie algebras h={E, }  by some /?-tensor 
operators u={V,] satisfying the CKS , 

[Ea? v b ] = c  r:bV<. ( 1 . 3 ~ )  

IV.3 vbl=fab(Ec)  V,EU,  E.Eh (1.36) 

where T : ~  are matrix elements of 'operators V ,  and fah(. . .) are power series in 
generators of the subalgebra h only.~ Evidently, this construction generalizes the well- 
known one for oscillator algebras osc(m) = u(m)  a h ( m )  [6] and the Cartan expansion 
for usual real semi-simple Lie algebras [21]. 

Until quite recently such deformed Lie algebras g, were examined mainly in the 
context of quantum field theory and statistical physics models [16-201. But results of 
recent papers [22-291 show certain possibilities of their applications in other branches 
of modern quantum physics. Specifically, in [22-253 it was shown that deformed Lie 
algebrasg, with the structure (1.2)-(!.3) arise in a natural manner in some composite 
many-body physics models with Hamiltonians H having some symmetry groups G,, 
( [ H .  G,,] = 0)  and presented as linear forms in elements of finite sets I(GSnv) of basic 
invariants ofgroups Gin,. The sets Z(G,,,") endowed by commutators [A, B] = A B  - BA 
lead, in general, to deformed Lie algebras gd of the (1.2) type which retain some 
properties of usual Lie algebras and, besides, form together with G,,, generalized 
Weyl-Howe's dual pairs (D, = Gin,. D? = g d )  which act complementarily [30,23] on the 
Hilbert spaces L ( H )  of quantum states of models under study. AU this opens up 
possibilities of application of the g, formalism to solving physical problems by analogy 
with the usual Lie algebras (cf [6, 151). 

The aim of this paper is to show thc efficiency of the approach [a-251 in quantum 
many-body physics on simple models. 

In section 2 we display deformed Lie algebras g d ( H )  as algebras of dynamic 
symmetry (DS) in typical and widespread models whose Hamiltonians Hare invariant 
with respect to certain groups Gin,(H) and outline their representations on the model 
spaces L ( H ) .  A more complete list of such models can be found in the papers [25]. In 
section 3 we consider some applications of the gd(H) formalism to solving spectral and 
evolution tasks. In section 4 we discuss some generalizations of the results obtained. 
In the appendix we consider the example of the three-boson model. 

2. Polynomial deformations of Lie algebras in many-particle processes exhibiting 
some G,,-symmetries 

Let us consider quantum many-body models with essentially nonlinear multiboson 
Hamiltonians of the form 

ml m> 

I 
g d = h + u  (1.2) 

~ 

~, 

H = Z o , l a : a , + C  (Giib,+b,+ [ g ! ; : . : & ; . .  .a:bl , . . .  b,o+tiC] (2.1) 
i . j =  I '.,=I L @ t  

where g , , . are constants or time-dependent functions, a:, a,, b t ,  b, are boson 
operators, and non-quadratic parts of H describe different scattering processes, 
including creation/absorption of multiboson clusters in external classical (form, = 0 or 
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m,=O) and quantized fields [6,8,10-12.151, as well as n-photon squeezing and 
frequency-conversion in quantum optics 19,251. 

By a direct inspection of (2.1) we find the symmetry group G,.,(H) of the 
Hamiltonian H Cn@Cp@Gi:L where C,={ckn=exp(i2nk/n): a:-.cha:, 
k=O, 1 , .  . . . n - l } ;  Cp={chp: b:+chpbf. k = O , l , .  . . , p - l }  and G:;:=exp(gl;:)= 
exp(Zl,R,). We note that continious subgroups GI:: characterize symmetry proper- 
ties of the interaction of a- and b-boson subsystems; they are generated by the integral 
of motion 

i I 
and, perhaps, some other 

R.= pPa:ai+ vPb:bj, a=  1, . . . , k 
i 

whose number k depends on concrete forms of Hamiltonians (2.1) (see [25] and the 
appendix of this paper). Appropriate sets E =  I(GiOv) of basic invariants composed of 
the second quantization operators a:, a,, b:, b, are given as follows [25]: 

B=B%BB" (2.2a) 
Eh = {Eo = a:u,, i ,  j = 1, . . . , ml} U {EiJ = b,"b,, i, j =  1, . . . , m2} (2.26) 

where E" corresponds to the quadratic part Ho of H and generates (via the standard JS 
mapping) usual unitary Lie algebras h(B)  = u(ml) fBu(m2) ,  u(m,) = Span{Ejj}, 
u(m2) = Span{&} while E" generates the coset space u(B)  = Span {YG :::!;. (E::::$)+} 
of the (u(m,)$u(m,))-symmetric tensors which, evidently, obey CRS of the (1.3a) 
type, 

[Eji, ~: . :~]=s , , ,Y~~z~~.~~"+s , ,*Y~:: , ; , , 'p , "+ ' ' ' ( 2 . 3 ~ )  
[E;,. y y : ! : ] = - ( d . .  I,, y~iz . . . ib+6. .y i" . . ."+ I , . . . , .  ' I )  I , . .  I" . . .). (2.3b) 

At the same time elements of B satisfy some extra polynomial relations (syzygies) 
which follow from their specific forms as GiDv-invariants and the CRS for a:, ai, b:, bi 
[24,25]. Specifically, from (2.2) we find 

. .  
Bo = {y$  : -JP ," = a ~ . . .  a,:b,, . . .  b , ~ } U { ( Y ~ : : . ~ ) + }  (2 .24 

Fp.. J,, ] . . . S p +  i ! . , . i p ; > l . . . $  

(2.4) 
,, , . .JY: ,  . . .  tn ) =Ai, .  . . c : t l . .  .,P({E,j; EqH 

1 1 . .  .sp + i t . .  . J ~  = . . i (Y!, ..., " 1 Yh. .  ," '1.. c 
where A.::(. . .) and B : ' :  (. . .) are polynomials of the nth order in variables Eji and of 
thepth order invariablesEiJ (with thesameleading termsforA::: (. . . )and&'(.  . .)); 
for example, in the case m2=0 we have 

" - 1  

yr .  , ,(Y',. . . I )+  = n (E. - 0 =(E, , ) (")  
J = U  

( Y J , ,  , c)+yi, . i =  n)("), 

From (2.2) and (2.4) one gets immediately CRS of the (1.3b) type for the coset 
generators 

[ y$ : ,  :h ,  c; : = 0 = [( yA ,-+)+, ( y s ~  . .  .$ 
(2.5) 

,I I ,  ,, . . .," )+  1 
[ ( y$ : : :k )+ ,  y;;::;n]= pJi I , .  . . " r ,  . . . ,sp ,,,({E;,; 4 1 )  

where P:: . ( .  . .) are polynomials of the (n t p  - 1)th order in E,,, E,,. 
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Thus, extending the (u(ml)$u(m2))/&t algebras (as quadratic DS subalgebras of 
H )  by the Gi.,(H)-invariant ( U ( ~ , ) @ K ( M ~ ) )  - tensors embedded in U(h(m,)@h(mz)) 
we have obtained some new Lie-algebraic structures g J H )  of the (1.2), (1.3) type 
(polynomial Lie algebras) as full DS algebras of H .  Evidently, this way of introducing 
coherent dynamic variables Eg,(H) generalizes the JS mapping and, therefore, may 
be named as the G-invariant polynomial JS mapping. In their properties algebras 
g d ( H )  are more similar to W-algebras [17] than q-algebras since they have no 
continuous deformation parameters like q. At the same time the numbers ‘n ’ ,  ‘p‘ can 
be considered as specific discrete deformation parameters. Therefore algebras g d ( H )  
may be viewed as specific (polynomial) deformations oscpP)(m), m = m, + mz, of the 
usual oscillator algebras osc(m) (cf [31]) since they are reduced to osc(m) for lowest 
values of n , p :  n + p = l ;  the label (n;p) indicates that coset generators are 
(u(ml)@u(m2))-symmetric tensors @]. Besides, algebras g,(H) may be considered 
as deformations sp$“(2m; R) (forp=O) or supp’(m) (for nfO, p#O) of Lie algebras 
sp(2m; R)  or w ( m )  since g,(H) = sp(2m; R )  for n = 2, p = 0 and g d ( H )  = su(m) for 
n = 1, p = 1. So, we have got two different kinds of polynomial Lie algebras g, related 
to compact or non-compact Lie algebras, depending on the occurrence or the absence 
of coupling a- and &-subsystems. 

As was mentioned, algebras gd(@) form together with groups G,,(H) generalized 
Weyl-Howe pairs on the spaces 

~ 

i 

I a.# 

~ ( ~ ) = ~ ~ ( ~ ~ ) = s p ~ { l n = , ~ z ~ ) = ~  (a;)””(b;)”pi~)] 

I 

that leads to the decompositions 

of L,(m) into direct sums of the subspaces L([l;]) which are invariant with respect to 
actions of both G,,(H) and g d ( H )  (the label [ I i ]  specifies simultaneously irreducible 
representations (irreps) of both G,”” and g,). Besides, algebras g d ( H )  resemble in their 
structure properties real semi-simple algebras, and, therefore, algebraic properties 
and representations of the first ones can be developed in parallel to those of the latter 
ones [20,25]. 

For further clarification of the above remarks we consider in more detail the 
simplest example when m , = l ,  m2=l  (see also the appendix). Introducing the 
notation Y u = ( E , l - ~ , l ) / ( n + p ) ,  Y I = Y i : - : f ,  Y -  = ( Y + ) *  we find from (2.3)-(2.5) 
the CRS 

[Y, ,Y*]=?Y,  (2.7a) 
~r 

[Y- ,  Y + I  = %.p(yu) = i”.,(Y”+ 1 )  - Yn.p(Yu) 

(2.76) 

[R,Y.l=O =a(a - 1 )  . . . (a - b + 1) 

that allows us to identify g d ( H )  as deformations (2)  of the Lie algebra sl(2). In 
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accordance with the above general remarks we will distinguish compact 
(sl(dR:+')(2)=sup+')(2), p ,  n f O )  and non-compact ( s@0)(2)=su~l(1 ,  1). p=O, n # O )  
versions of sPp'(2). 

It is easy to check that algebras sl$"'+'(2) have the Casimir operators Cb":p'(2) given 
by the expressions 

C p ( z ) =  - Y + Y .  +y . . , (Yo)  (2.8) 
that is a deformation of the Casimir operator C,(Z) = * E+E- +E&') of the algebra 
4 2 )  [21]. This relationship of algebras sl6";"(2) with the usual Lie algebras allows us 
to develop a theory of representations of the first ones by analogy with that of the 
usual Lie algebras [20]. 

Specifically, using the above realization (2.2) we can determine all irreps of 
s P p ) ( 2 )  which act on L ( H )  = L,(m). Namely, because of the identities (2.4) we find 
that C$":p)(2)B=0 on L(H) where the subscript 'B' denotes the boson realization. 
From here it follows immediately that suP)(l, 1 )  has on L,(l) only n infinite- 
dimensional irreps D(&) specified by the lowest weights I ,  = kln, k = O,1,  . . . , n = 1, 
and the lowest vectors IIl)=[k!]-"2(a:)XIO)(Yolll)=I,II,), Y-If , )=O) .  At the same 
time the algebra  SUP:^'(^) has on L(H)=L,(2)  an infinite number of finite- 
dimensional imps  D(f l ,  &) (with dimensions d(l,,  f2) = [[s/p]] + 1 = [[lz/p - f,]] + 1) 
which are specified by the lowest weights I ,  = (k -s ) l (n  + p ) ,  eigenvalues & = 
( k p + n s ) / ( n + p )  of the above operator R in (2.7), k = O , l , .  . . , n - 1 ,  s=O, 1,. . , , 
and the lowest vectors If,, I * ) =  [k!s!]-"'(a: )k(b; )"IO) (Yol [I j ] )=I l~[ l i ] ) ,  Rl[I,])=Iz\[lj]), 
Y-I[I , ] )=O);  here [ [ x ] ]  is the integral part of the number ' x ' .  All other basic vectors 
I [ l j ] ;  r ) ,  t > O ,  of the sly:"(Z) irreps have the form 

I[bl;A=N([bl. r)(Y+YI[CJ) 
where 

,-I 

(v. . .))-'=<P,II(y- W +  Y I K I )  = n qn,p(ll + t - - r )=  [q..,(i1 + t)]").  
,=0 

Without dwelling on other features of the ~Fd".~'(2)  irreps and their generalizations 
for g,(H) with any m, (see [20,21-25]) we note only that the suP!(l, 1) GCS 
la; [l,])=exp(aY, -a*Y_)I [ I , ] )  of the group orbit type are not analytical vectors for 
all values n > 2  [32] unlike the GCS which are eigenfunctions of the lowering operator 
Y- [Z]. 

3. Polynomial deformations of sFh":"(2) in solving physical problems 

By analogy with the case n e 2  [6] one can expect that the theory of deformed Lie 
algebras may be useful for treating different problems with Hamiltonians ( 2 . 1 ) .  
Specifically, the above g.,-invariant decompositions of L ( H )  of the (2.6) type allow us 
to examine models under study independently on each g,-invariant subspace L ( [ f , ] ) .  
But for lack of simple formulas for disentangling exponents of the gd elements [32] one 
cannot apply their orbit GCS technique for diagonalizing H or for finding appropriate 
evolution operators UH(t;  to). as is the case for familiar Lie algebras [S, 61. 
Nevertheless, below we show that there exist some possibilities of the g, formalism 
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application to solving these tasks. We focus on the case of the ~ @ " ~ ( 2 )  algebra, since 
this is by far the simplest one. allowing elucidation of the main ideas of our analysis. 

One way of applying the gd formalism is connected with finding bound states of the 
stationary Schrodinger equation 

with the Hamiltonians (2.1) on the invariant subspaces L([l,])cL(H). In the case 
gd=s@.p)(2) one can present H from (2.1) in the form 

We will seek solutions of (3.1) in the form [25] 

i 

HI E,) = E,[ E , )  (3.1) 

H=aY,+bY,+b*Y_+C [U,, C]=O. (3.2) 

that corresponds to the diagonalization scheme [33] of any elements of the usual Lie 
algebra sl(2). When substituting (3.3) into (3.1) and using (3.2) and (2.6) one obtains 
the recurrence relations (finite-difference equations) 

[U, +f)a-AlQf+ b * 7 ~ . ~ ( l , + f +  ~ ) Q / + I  = O  f = O ,  1,. . . (3.4) 
for determining the coefficients Q,= Q,(E); here yn&) is the ~ l $ " . ~ ' ( 2 )  structure 
polynomial from (2.7) and the spectral parametera= E -  c comprises both the energy 
eigenvalue and that of the invariant operator C which is constant on the whole L ( [ l , ] ) .  

Difference equations (3.4) belong to the hypergeometric type [34] and for 
structure polynomials q&), n + p = 2 ,  related to the usual sl(2) their solutions are 
expressed in terms of classical orthogonal polynomials in the discrete variable A 
[33,34]. In the case of deformed algebras s@"(2) we get in such a manner new classes 
of orthogonal polynomials in a discrete variable A(E) on inhomogeneous (in general) 
lattices related to non-equidistant energy spectra of H in (2.1). The concrete forms of 
these lattices and spectra can be found by solving characteristic equations 

where F,@) are determinants of tridiagonal matrices of coefficients in (3.4). For the 
non-compact version suyl(l, 1) of slY,"(2), when all subspaces L([l,]) are infinite- 
dimensional, from (3.4) one easily obtain recurrence relations (resembling those for 
the Bessel functions Jk(A)  [34]) 

for determining Fk(A). w,hile for the compact version s$~"(2) this is not the case. 
However, for su$".p'(2) all irreps on L([l,]) are two-side bounded and one can use, 
instead of (3.9,  the condition 

F,,(4 = 0 (3.5) 

[ ~ ( k -  1) -1lFd.L) =Fk.i(l) + lb12Yn,p(k)Fk+i( l )  (3.6) 

I 
Qd(E) =O+[(l,  + d -  1)a , -Aled-, + bQd-?= 0 (3.7) 

for determining spectra {E,,=E.(l,)} where d=d(l , .  1 2 )  is the L([f , ,  12]) dimension. 
So, solving (3.4)-(3.7) together' with appropriate boundary conditions, we find 

eigenfunctions and energy spectra of Hamiltonians (3.2) that allow us to examine and 
display the dynamic features of models under study [9,28,35,36]. In particular. in the 
case of su$':p'(2) equations (3.4) and (3.7) are easily solved by hand for L ( [ / , / 2 ] )  of 
lowest dimensions. An inspection of the form of these solutions allows us to determine 
periodic or almost periodic regimes of time evolution of models under study for 
certain initial conditions and specific values of coupling constants [35,36]. 
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One way of solving (3.4) is provided by the generating function method, when 
instead of the coefficients Q,(E) one seeks generating functions 

u(z;  E )  = Qr(E)z'. 
I 

These functions are related to IE) by the equation 

I E) = U( y+ ; E )  I [61) 

and satisfy differential equations of the Fuchs type [34] 

{dl -1 + a r  dldz + b*z-'@,,Jzd/dz + ll)}u(z; E )  = O  

which are obtained from (3.4) and (3.8) with the help of equations 

Af(x)=f(x+l)-f(x) 

(zd/dz)")= Zd'/dZ 
and are related to the realization 

zd/dzz'= fz' A'"=A(A - 1) , . . ( A  - B + 1) 

"4" 

(3.8) 

(3.9) 

(3.10) 

(3.11~) 

(3.11b) 

.. . r_ 

Y+=z  Yu=(zd/dz+ll) Y- = r - ' ~ # ~ , , ( z d / d r + l , ) = ~  cSF'd' /d2 (3.12) 

of the s@,"'(2) generators Y, by means of differential operators. We note that (3.10) 
are close in their form to those defining generalized hypergeometric functions 
p P ( : . : ; z )  in the continuous variable 'z' ([34], voll ,  ch4); besides. because of (3.1). 
(3.8) and (3.9) their solutions seem to give some new (non-classical) classes of 
orthogonal polynomials in '2'. 

So, using the ~ @ . ~ ' ( 2 )  forinalism, one can obtain solutions of the (3.1) and (3.2) 
with the help of solving either finite-difference equations (3.4) or differential equa- 
tions (3.10) of special types. We also note that from (3.10) one can find its non- 
stationary analogue 

ihau(z; t)/at= {a([, + d/dz) + bz + z-'b*@&d/dr + ll)]u(z; I) (3.13) 

defining solutions of an appropriate non-stationary Schrodinger equation related to 
(3.1). We point out that in general (3.13) contain higher derivatives d'uldf and their 
solutions (expressed as contour or multiple integrals) are singular (341. 

Another way of appliying the sQtp)(2) formalism to solve physical tasks is based on 
comparing Hamiltonians (3.2) with 'distorted' Hamiltonians 

H D = ( i V o +  bV, + b * V _ i  C [C, VJ=O (3.14) 

which are linear in generators V, of certain usual Lie algebras g ( H D ) .  Herewith, 
algebras g ( H D )  are related to sfi$'.P'(2) via the Hr-type mapping 

slpP)(2)-tg(HD) = {Va,  a = 0, k : [V,,,  Vi] = * V,. [V- ,  V ,  ] = aV,+P) (3.1%) 

v,= Y u + p  v+ = Y+f(Yd v- =f(Y")Y- (3.15b) 

S = l  
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where functions/(Yo) are determined from the equations [37] 
#J(Yu)-@(Yo- l)=aYo+cyc+B W O )  = l f ~ ~ o ~ 1 2 v " , p ~ ~ o +  1) (3.16) 
with being the structure polynomial in (2.76). 

If(Y,)l'=(Yo+ l+Iz)lv",p(Yo+ 1) (3.17) 
whereas for g(HD)=su(2)/su(l, 1) (with a= F2,  p=O) one obtains 

If(Yo)l'=[Iz-(Yo+ 1 +P)l/Y",p(Yo+ 1). (3.18) 
Herewith constants A, in (3.17) and (3.18) are determined from conditions of a 
canonical behaviour of operators V, of the g(HD) irreps realized on the subspaces 

Thus, generalized HP mappings' (3.15) allow us to compare original nonlinear 
problems with their specific linearized versions governed by distorted Hamiltonians 
(3.14) and admitting exact solutions'with the help of the Lie-algebraic techniques [4- 
6, 151. Solutions of such linearized models can be viewed (at an adequate choice of 
parameters a, b in (3.14)) as specific smooth (analytical) approximations modulating 
exact (generally speaking, non-analytical [32]) solutions of models with Hamiltonians 
(3.2); herewith one may use relative moments [38] 

dp(H,  HD)=ITr(H-*)P/Tr(H)'1 p =  1,2 , .  . . (3.19) 
(with traces taken over invariant subspaces L([l,])cL(H) or whole spaces L ( H ) )  as 
proximity measures of such approxhations. These linearized solutions can be also 
used as specific zeroth-order approximations for developing perturbative and other 
iterative schemes of solving origi~nal tasks [27,35] which are related to finding 
approximate solutions of (3.4)-(3.7), (3.10) and (3.13). Examples of such develop- 
ments will be given in forthcoming papers. 

For example, takingg(HD)=osc(l) (with a=O,B=I in (3.15a)). we find 

W , 1 )  [25,371. 

4. Conclusion 

In conclusion we outline some possible developments of the results above. One line of 
investigations is concerned with exlensions of u(m) in models of the (2.1) type by 
using other than symmetric tensors vc({aT, aJ}) in their boson or fermion realization as 
coset generators in (1.2): for example. such extensions by skew-symmetric tensors are 
relevant as DS algebras to compositkmodels with the internal s U ( n )  symmetries 1241. 
This opens a way for obtaining nonlinear models in quantum physics which are 
solvable by techniques sketched in the previous section [22-251. Another generaliza- 
tion here is related to extensions ,of other Lie algebras h#u(m) (as DS algebras 
of models with quadratic Hamiltonians) via the scheme (12). For example, in 
models with G,,, = SO(n) we get h =sp(2m, R) [30] and 

u=Span{[a: . . .a:a,,: . .aJ,,.,]=Z-c."l"~.-~" *a,!,, + . . . aL,a,,,,,, , . . a,m.!a,,: 

~ ' ' . - " f l  is the fully antisymmetric tensor with sl2. '"=1}. 

Herewith in all these cases CRS of ttie (1.36) type arc fulfilled owing to initial CRS for 
a:, a, and syzygies of the invariant theory [l,  221. From the mathematical viewpoint it 
is also of interest to examine non-Fock irreps of deformed algebras as well as new 
classes of orthogonal polynomials related to ga. Specifically, one of practically 
important tasks here is in getting appropriate deformed analogues of the Rodrigues 
formula for concise representations of such polynomials. We also note that the 
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scheme of section 2 can be generalized (via JS mapping) to the case of two or more 
interacting subsystems described in terms of generators of two or more usual Lie 
algebras. A simple example is provided by the point-like Dicke model given in terms 
of the su(2) and h(1) algebras [E].  

As for developing physical aspects of the work we first of all point out approximate 
schemes of analyzing both energy and dynamic regimes which are based on using 
generalized HP mappings of the (3.15) type; specifically. one can determine in such a 
way interrelations between polynomially and q-deformed Lie algebras in order to 
display different exotic states and phenomena [25-291 in realistic multi-particle 
models. It is also of interest to examine possibilities of constructing evolution 
operators UH(t,  t u )  associated with gd along the line of the approach [39]. Another 
promising way here consists in representations of UH(t, to) in the form of power series 
in generators of g,. For example, for the above algebras sld(2) one can use the ansatz 

U H ( ~ ,  t o )  = @:(yo; t, tu) (y- )" + (y+ )"B!(Yu; 1, tu)) (4.1) 
" 

where operator functionsAf(. . .) and Bt( .  . .) are determined from some differential- 
difference equations [@]. 

Furthermore, the analysis of physical tasks, related to sld(2) in the Heisenberg 
picture [40] leads to generalized Bloch equations whose quasiclassical solutions are 
expressed in terms of special Abelian functions [41]. Indeed, as follows from (2.7) and 
(3.2), the Heisenberg equations for collective dynamic variables YJt), related to 
generators Y, E sly;P)(2) are reduced to the form 

ihdYu/dr = by, - b*Y_ (4.2~)  

ihdY+ldt= -ay+ -b*pl..,(Yd, ~ ~ , , ( y d  = Y&'o+ 1) - Y..,(Y~) (4.2b) 
ihdY_/dt=aY- + bq,,,(Y,) (4 .2~)  

which coincide with the Bloch equations [42] in the case n + p = 2  in tpnJYU), 
The solution of (4.2) is reduced to solving the only nonlinear equation 

d' YJdP = AC - h'A'Yu(t) + BPI",,( Yo(()) (4.3) 
where A =alh2, B=21b12/h', C = H -  C is an integral of motion. In the mean-field 
approximation, given by the relation 

(P,,.,(Yu(~)) = ~ d W U ( ~ N )  (4.4) 
we get from (4.3) for the c-number function y(f) = (Yu(t)) the equation 

which is solved for polynomial functions qn, , (x)  in terms of hyperelliptic integrals 
defining special Abelian functions [41] (unlike the case of exponential functions q(y) 
for q-deformed algebras s4(2)). Therefore, exact operator solutions of (4.2) and (4.3). 
in a form like (4.1), seem to determine operator analogues of Abelian functions 
which, perhaps, are related to the problems of quantization on algebraic (Abelian) 
varieties [43,41(b)]. It is also of interest to examine interrelations of these obser- 
vations with possibilities of solving algebraic equations (3.7) in terms of theta- 
constants and hyperelliptic integrals [41(b)]. 
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Appendix. The three-boson model 

In this appendix we consider applications of our approach to the three-boson model 
with the Hamiltonian 

! 
3 

H =  wp:a,+ga:a’a,+g*a,a,a: (A.1) 
i= I 

which is widespread in quantum optics and laser physics [44-461 and follows from 
(2.1) in the casen=2,p=l,ml=Z,mz=l,g:l, ,=gs,,s,,~,,, .  

In accordance with the general remarks of section 2 we find GinV(H)= 
C 2 @ U o ( l ) @ U l ( l )  where Uo(l)=’exp(LZ&), 3Ro=(a:a, +2a:a3+a:a,). U,(l)= 
exp(i,R,), R,=a:a, -a:’a2. and gi(H)=sup1’(2)  with generators 

2 

ru = + (E a;a, - .:a:) Y ,  =a;a;a,, Y-  = ( Y + ) +  
, = I  

! 

and the structure polynomial 

Then, Hamiltonian (A.1) can be wiittenin the form (3.2) witha=w,+w,-w,, b = g ,  
C=R,(ol+w,/2+w,)+Rl(ol-w,)12. and the decomposition (2.6) takes the form 

L,(3)= C L ( / l , ! 2 , 1 3 ) = i  (L(-s/3.2F/3.0) 

I 

! 

! 

@ ,=O 

lh.1>. 131 

k - s  k+d ) ( k - s  k + 2 ~ , - ~ ) ] )  
, k  + L  -- 

3 ’  3 
! h = 1  

~ 
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where 

All of the spaces L([I,]) are two-side bounded, i.e. they have highest vectors 
I [&] ;  M)=N(Y+) '"I[ l i ] ) ,  M = s ,  Y+I[&];M)=O, and finite dimensions d([l,])=s+ 1. 

The substitution of ~ # ~ . , ( 1 ~  +f) = y ( l I  +f; 1,. l,) from (A.2) into (3.4) and (3.7) 
leads, after some algebra, to the equations 

(af-n)Q,+gQ,-i+g*(s-f)(f+1)(f+k+l)Q~+i=O,f=0, 1, .  . . , S  ('4.5) 
where a = o1 + w2- w3, A = E -so3-  k o ,  for l3 = k and d = E -sw3 - kw, for l3 = -k, 
and boundary conditions 

Q - i = o ,  c Q t + i  = o ) + ( s a - A ) Q z  + gQs-1 = O  ( A 4  
for solving the spectral problem with the Hamiltonian (A.l) on the 
(s+ l)-dimensional subspaces L((k-s)/3, (k+2r)/3, +k). 

From (A.5) and (A.6) we find 

Q/= QuP,(A)/(g* )'(S)Wk +f)'" f = 1 , .  . . , ~ , ( a ) ( ~ ' = a ! / ( a - b ) !  (A.7) 
where P,(A) is a polynomial of thefth order in 1, and the spectra {do}, {E- }  of (s + 1) 
admissible values A,,, E, are determined by solving the algebraic equation 

Ps+i(d) = O+((sa - D Q s  + gQs-1 =O). (A.@ 
For lowest values of s one can find the exact form of P,(L) and roots of (AX) by 

hand; for example, for s = 1 we have 

Po(A) = 1 P1(A)=A 

and 

P2(A)=0=A(1-n)- Igl'(k+ 

For higher values of s these tasks are easily solved using simple computer routines; 
specifically, for solving (A.8) one can use the Umemura algorithm [41(6)] expressing 
roots of algebraic equations in terms of theta-constants. 

We note that the above algorithm of solving the model (A.l) ,  given by equations 
(3.3), (A.3)-(A.8), is simpler than that obtained by using the algebraic Bethe Ansatz 
[46]. Specifically, it requires only the determination of spectral parameter A (from 
solving (A.8)) instead of many E, (from solving a system of nonlinear algebraic 
equations) in [46]. Besides, our approach takes into account explicitly symmetries of 
the Hamiltonian (A.l) that allows us to give, unlike [46], a clear physical classification 
(see, e.g., equations (A.3), (A.4)) of the (A.l) eigenstates IE)cLF(3); specifically, 
we have k = ~ N l - N , ~ , s = N 3 + ( N , + N ~ - J N l - N 2 ~ ) / 2  where N,standsforthe popula- 
tion of ith mode. These remarks are in accordance with results of similar comparisons 
(but without using a Lie-algebraic formulation) in [47] for the quantum 
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Ablowitz-Ladik system which is related to a deformed oscillator algebra. (The author 
thanks Professor A J Madarlane fpr a stimulating discussion of this point.) 

As a final remark we point out that the substitution of (A.2) in (4.2). (4.3) and 
(4.5) enables one automatically to reproduce the results of [44] where elliptic 
functions were first introduced for analysing the model (A.1). A comparison of our 
approach with formal and complicated solutions [45] requires further investigations. 
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